Permethrin-treated child wraps for the prevention of malaria: outcomes of a randomized managed pilot research in rural Uganda | Malaria Journal

0

  • Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375:2435–45.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7: e1000324.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5: e42.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonahasa S, Maiteki-Sebuguzi C, Rugnao S, Dorsey G, Opigo J, Yeka A, et al. LLIN Evaluation in Uganda Project (LLINEUP): factors associated with ownership and use of long-lasting insecticidal nets in Uganda: a cross-sectional survey of 48 districts. Malar J. 2018;17:421.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rugnao S, Gonahasa S, Maiteki-Sebuguzi C, Opigo J, Yeka A, Katureebe A, et al. LLIN Evaluation in Uganda Project (LLINEUP): factors associated with childhood parasitaemia and anaemia 3 years after a national long-lasting insecticidal net distribution campaign: a cross-sectional survey. Malar J. 2019;18:207.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchwald AG, Walldorf JA, Cohee LM, Coalson JE, Chimbiya N, Bauleni A, et al. Bed net use among school-aged children after a universal bed net campaign in Malawi. Malar J. 2016;15:127.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stelmach R, Colaço R, Lalji S, McFarland D, Reithinger R. Cost-effectiveness of indoor residual spraying of households with insecticide for malaria prevention and control in Tanzania. Am J Trop Med Hyg. 2018;99:627–37.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akogbéto MC, Aïkpon RY, Azondékon R, Padonou GG, Ossè RA, Agossa FR, et al. Six years of experience in entomological surveillance of indoor residual spraying against malaria transmission in Benin: lessons learned, challenges and outlooks. Malar J. 2015;14:242.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Dorsey G, et al. LLIN Evaluation in Uganda Project (LLINEUP): a cross-sectional survey of species diversity and insecticide resistance in 48 districts of Uganda. Parasit Vectors. 2019;12:94.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 2010;7: e1000303.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Geissbuhler Y, Chaki P, Emidi B, Govella NJ, Shirima R, Mayagaya V, et al. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam. Tanzania Malar J. 2007;6:126.

    PubMed 

    Google Scholar 

  • Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol. 2006;20:425–37.

    CAS 
    PubMed 

    Google Scholar 

  • Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J, et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol. 2013;42:235–47.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa JI, et al. Impact of vector control interventions on malaria transmission intensity, outdoor vector biting rates and Anopheles mosquito species composition in Tororo. Uganda Malar J. 2019;18:445.

    CAS 
    PubMed 

    Google Scholar 

  • WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019.

  • Hogan AB, Jewell BL, Sherrard-Smith E, Vesga JF, Watson OJ, Whittaker C, et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. Lancet Glob Health. 2020;8:e1132–41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. World Malaria Report 2020. Geneva: World Health Organization; 2020.

  • U.S. President’s Malaria Initiative. Malaria Operational Plan FY 2020. Washington, DC: 2020.

  • Koenker H, Ricotta E, Olapeju B, Choiriyyah I. Insecticide-Treated Nets (ITN) Access and Use Report. Baltimore, PMI: VectorWorks Project; 2018.

  • WHO. Achieving and maintaining universal coverage with long-lasting insecticidal nets for malaria control. Geneva: World Health Organization; 2017.

  • Okia M, Hoel DF, Kirunda J, Rwakimari JB, Mpeka B, Ambayo D, et al. Insecticide resistance status of the malaria mosquitoes: Anopheles gambiae and Anopheles funestus in eastern and northern Uganda. Malar J. 2018;17:157.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ojuka P, Boum Y 2nd, Denoeud-Ndam L, Nabasumba C, Muller Y, Okia M, et al. Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda. Malar J. 2015;14:148.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 2021;20:138.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Control of residual malaria parasite transmission: Guidance Note – September 2014. Geneva: World Health Organization; 2014.

  • WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.

  • Roll Back Malaria Partnership Secretariat. Action and investment to defeat malaria 2016–2030. For a malaria-free world. Geneva: World Health Organization; 2015.

    Google Scholar 

  • malERA Consultative Panel on Tools for Malaria Elimination. malERA: an updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med. 2017;14: e1002455.

    Google Scholar 

  • Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Health. 2017;2: e000211.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeka A, Gasasira A, Mpimbaza A, Achan J, Nankabirwa J, Nsobya S, et al. Malaria in Uganda: challenges to control on the long road to elimination: I. Epidemiology and current control efforts. Acta Trop. 2012;121:184–95.

    PubMed 

    Google Scholar 

  • Uganda National Malaria Control Division, Uganda Bureau of Statistics, and ICF. Uganda Malaria Indicator Survey 2018–19. Kampala, Uganda, and Rockville, USA; 2020.

  • Cote C, Goel V, Muhindo R, Baguma E, Ntaro M, Shook-Sa BE, et al. Ongoing long-lasting insecticide-treated net distribution efforts are insufficient to maintain high rates of use among children in rural Uganda. medRxiv. 2021:2021.02.26.21252527.

  • Boyce RM, Muiru A, Reyes R, Ntaro M, Mulogo E, Matte M, et al. Impact of rapid diagnostic tests for the diagnosis and treatment of malaria at a peripheral health facility in Western Uganda: an interrupted time series analysis. Malar J. 2015;14:203.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyce RM, Collins M, Muhindo R, Nakakande R, Ciccone EJ, Grounds SC, et al. Dengue in western Uganda: a prospective cohort of children presenting with undifferentiated febrile illness. medRxiv. 2020:2020.08.21.20179002.

  • Tomalik-Scharte D, Lazar A, Meins J, Bastian B, Ihrig M, Wachall B, et al. Dermal absorption of permethrin following topical administration. Eur J Clin Pharmacol. 2005;61:399–404.

    CAS 
    PubMed 

    Google Scholar 

  • van der Rhee HJ, Farquhar JA, Vermeulen NP. Efficacy and transdermal absorption of permethrin in scabies patients. Acta Derm Venereol. 1989;69:170–3.

    PubMed 

    Google Scholar 

  • Armed Forces Pest Management Board. Technical Guide No. 36: Personal Protective Measures against Insects and other Arthropods of Military Significance. Silver Spring, MD: Armed Forces Pest Management Board; 2015.

  • Kegel P, Letzel S, Rossbach B. Biomonitoring in wearers of permethrin impregnated battle dress uniforms in Afghanistan and Germany. Occup Environ Med. 2014;71:112–7.

    PubMed 

    Google Scholar 

  • Proctor SP, Maule AL, Heaton KJ, Adam GE. Permethrin exposure from fabric-treated military uniforms under different wear-time scenarios. J Expo Sci Environ Epidemiol. 2014;24:572–8.

    CAS 
    PubMed 

    Google Scholar 

  • Proctor SP, Scarpaci MM, Maule AL, Heaton KJ, Taylor K, Haven CC, et al. Role of body composition and physical activity on permethrin urinary biomarker concentrations while wearing treated military uniforms. Toxicol Lett. 2018;299:210–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowland M, Durrani N, Hewitt S, Mohammed N, Bouma M, Carneiro I, et al. Permethrin-treated chaddars and top-sheets: appropriate technology for protection against malaria in Afghanistan and other complex emergencies. Trans R Soc Trop Med Hyg. 1999;93:465–72.

    CAS 
    PubMed 

    Google Scholar 

  • Graham K, Rehman H, Ahmad M, Kamal M, Khan I, Rowland M. Tents pre-treated with insecticide for malaria control in refugee camps: an entomological evaluation. Malar J. 2004;3:25.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Londono-Renteria B, Patel JC, Vaughn M, Funkhauser S, Ponnusamy L, Grippin C, et al. Long-lasting permethrin-impregnated clothing protects against mosquito bites in outdoor workers. Am J Trop Med Hyg. 2015;93:869–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaughn MF, Funkhouser SW, Lin FC, Fine J, Juliano JJ, Apperson CS, et al. Long-lasting permethrin impregnated uniforms: a randomized-controlled trial for tick bite prevention. Am J Prev Med. 2014;46:473–80.

    PubMed 

    Google Scholar 

  • Centers for Disease Control and Prevention. Zika virus: pregnancy. Atlanta, CDC; Available from: https://www.cdc.gov/zika/pregnancy/.

  • Bowman NM, Akialis K, Cave G, Barrera R, Apperson CS, Meshnick SR. Pyrethroid insecticides maintain repellent effect on knock-down resistant populations of Aedes aegypti mosquitoes. PLoS ONE. 2018;13: e0196410.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Estep AS, Sanscrainte ND, Cuba I, Allen GM, Becnel JJ, Linthicum KJ. Failure of permethrin-treated military uniforms to protect against a laboratory-maintained knockdown-resistant strain of Aedes aegypti. J Am Mosq Control Assoc. 2020;36:127–30.

    PubMed 

    Google Scholar 

  • Frances SP, Mackenzie DO, Sferopoulos R, Lee B. The landing of field mosquitoes on permethrin-treated military uniforms in Queensland, Australia. J Am Mosq Control Assoc. 2014;30:312–4.

    CAS 
    PubMed 

    Google Scholar 

  • Kittayapong P, Olanratmanee P, Maskhao P, Byass P, Logan J, Tozan Y, et al. Mitigating diseases transmitted by Aedes mosquitoes: a cluster-randomised trial of permethrin-impregnated school uniforms. PLoS Negl Trop Dis. 2017;11: e0005197.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Uganda Bureau of Statistics (UBOS) and ICF. Uganda Demographic and Health Survey Kampala, Uganda and Rockville, Maryland: UBOS and ICF.; 2018.

  • Davis NL, Barnett EJ, Miller WC, Dow A, Chasela CS, Hudgens MG, et al. Impact of daily cotrimoxazole on clinical malaria and asymptomatic parasitemias in HIV-exposed, uninfected infants. Clin Infect Dis. 2015;61:368–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mermin J, Ekwaru JP, Liechty CA, Were W, Downing R, Ransom R, et al. Effect of co-trimoxazole prophylaxis, antiretroviral therapy, and insecticide-treated bednets on the frequency of malaria in HIV-1-infected adults in Uganda: a prospective cohort study. Lancet. 2006;367:1256–61.

    CAS 
    PubMed 

    Google Scholar 

  • Kassaza K, Operario DJ, Nyehangane D, Coffey KC, Namugosa M, Turkheimer L, et al. Detection of Plasmodium species by high-resolution melt analysis of DNA from blood smears acquired in southwestern Uganda. J Clin Microbiol. 2018;56:e01060-e1117.

    CAS 
    PubMed 

    Google Scholar 

  • Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    PubMed 

    Google Scholar 

  • Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10:1.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011;45:626–9.

    PubMed 

    Google Scholar 

  • Grandesso F, Nabasumba C, Nyehangane D, Page AL, Bastard M, De Smet M, et al. Performance and time to become negative after treatment of three malaria rapid diagnostic tests in low and high malaria transmission settings. Malar J. 2016;15:496.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pritchard MJ, Hwang SW. Cases: severe anemia from bedbugs. CMAJ. 2009;181:287–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Londono-Renteria B, Drame PM, Weitzel T, Rosas R, Gripping C, Cardenas JC, et al. An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vectors. 2015;8:533.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave A Reply

    Your email address will not be published.