Chemists Develop a New Crystal Type of the Insecticide Enhancing Its Skill to Battle Mosquitoes and Malaria – ScienceDaily

0

By simply heating and cooling, New York University researchers have created a new crystal form of deltamethrin – a widely used insecticide used to fight malaria – that results in an insecticide that is up to twelve times more effective against mosquitoes than the existing form.

The results, published in the journal Proceedings of the National Academy of Sciences (PNAS), could represent a much-needed and affordable alternative to insecticides, given the growing resistance of mosquitoes.

“Using more active crystal forms of insecticides is a simple and effective strategy to improve commercially available malaria control compounds to circumvent the need for new product development in the ongoing battle against mosquito-borne diseases,” said Bart Kahr, professor of chemistry at NYU and one of the study’s lead authors.

“Improvements to malaria control are still urgently needed during the global COVID-19 crisis,” added Kahr. “The number of deaths from malaria in Africa is expected to double this year due to supply chain disruptions related to coronavirus. We need public health action to curb both infectious diseases and malaria, including more effective insecticides.”

Malaria is a major public health challenge worldwide. More than 200 million cases and 400,000 deaths are reported each year. Insecticides like deltamethrin can prevent the spread of mosquito-borne diseases and are often sprayed indoors and on bed nets. However, mosquitoes are becoming increasingly resistant to insecticides, so researchers and public health officials are looking for alternatives with new mechanisms of action.

Many insecticides, including deltamethrin, are in the form of crystals – the focus of research for Kahr and his colleague, NYU chemistry professor Michael Ward. When mosquitoes step on insecticide crystals, the insecticide will be absorbed through their feet and, if effective, will kill the mosquitoes.

As part of their research on crystal formation and growth, Kahr and Ward study and manipulate insecticide crystals and explore their alternative forms. In their PNAS study, the researchers heated the commercially available form of deltamethrin to 110 ° C for a few minutes and allowed it to cool to room temperature. This resulted in a new crystallized form of deltamethrin made up of long, tiny fibers radiating from a single point.

In tests on Anopheles quadrimaculatus and Aedes aegypti mosquitoes – both transmit malaria – and fruit flies, the new crystal form of deltamethrin worked up to 12 times faster than the existing form. Fast-acting insecticides are important to quickly control mosquitoes before they multiply or spread further.

The new shape also remained stable for at least three months – and capable of quickly killing mosquitoes.

To simulate how the two forms of deltamethrin would work in curbing the spread of malaria, the researchers turned to epidemiological models that suggest that using the new form in indoor spraying instead of the original form could cause malaria transmission itself in regions with a high percentage would significantly suppress the level of insecticide resistance. In addition, less of the new form would have to be used to achieve the same effect, potentially reducing the cost of mosquito control programs and reducing environmental exposure to the insecticide.

“Deltamethrin has been a leading tool in the fight against malaria, but it faces an uncertain future threatened by the development of insecticide resistance. The ease with which this new crystal form of Deltamethrin is made, combined with its stability and significantly higher potency, shows us that the new form can serve as a powerful and affordable tool to fight malaria and other mosquito-borne diseases, “said Ward.

Source of the story:

Materials provided by New York University. Note: The content can be edited by style and length.

Leave A Reply

Your email address will not be published.